organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-(2-Pyridyl)piperazin-1-ium chloride

Sadig-ur-Rehman,^a Sadia Saeed,^a Sagib Ali,^b* Saira Shahzadi^b and Madeleine Helliwell^c

^aDepartment of Chemistry, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan, ^bDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and ^cSchool of Chemistry, The University of Manchester, Manchester M13 9PL, England

Correspondence e-mail: drsa54@yahoo.com

Received 24 October 2007; accepted 26 October 2007

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.029; wR factor = 0.061; data-to-parameter ratio = 12.2.

The title compound, $C_9H_{14}N_3^+ \cdot Cl^-$, crystallizes at room temperature from chloroform as a zwitterion. The molecules are linked by N-H···Cl hydrogen bonds into chains. The piperazine ring adopts a chair conformation.

Related literature

For related literature, see: The Merck Index (1989).

Experimental

Crystal data

 $C_9H_{14}N_3^+ \cdot Cl^ M_r = 199.68$ Orthorhombic, $P2_12_12_1$ a = 7.1757 (6) Å b = 7.2196 (6) Å c = 18.7629 (16) Å

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: none 5613 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.029$	$\Delta \rho_{\rm max} = 0.22 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.061$	$\Delta \rho_{\rm min} = -0.16 \ {\rm e} \ {\rm \AA}^{-3}$
S = 0.96	Absolute structure: Flack (1983),
1956 reflections	787 Freidel pairs
160 parameters	Flack parameter: 0.04 (7)
Only H-atom coordinates refined	

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{l} N1 - H2 \cdots Cl1 \\ N1 - H1 \cdots Cl1^i \end{array}$	0.979 (19) 0.91 (2)	2.15 (2) 2.19 (2)	3.1020 (17) 3.0961 (17)	164.3 (15) 174.3 (17)
6	1	i 1		

 $V = 972.02 (14) \text{ Å}^3$

Mo $K\alpha$ radiation

 $0.40 \times 0.25 \times 0.15 \text{ mm}$

1956 independent reflections

1781 reflections with $I > 2\sigma(I)$

 $\mu = 0.35 \text{ mm}^{-1}$

T = 100 (2) K

 $R_{\rm int} = 0.044$

Z = 4

Symmetry code: (i) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL.

SA is thankful to Quaid-i-Azam University, Islamabad, Pakistan, for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2451).

References

Bruker (2001). SMART (Version 5.625) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2002). SAINT. Version 6.36a. Bruker AXS Inc., Madison, Wisconsin, USA.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

The Merck Index (1989). 11th ed. Rahway: Merk & Co. Inc.

supplementary materials

Acta Cryst. (2007). E63, o4526 [doi:10.1107/S1600536807053470]

4-(2-Pyridyl)piperazin-1-ium chloride

Sadiq-ur-Rehman, S. Saeed, S. Ali, S. Shahzadi and M. Helliwell

Comment

Piperazine is freely soluble in water and ethylene glycol, but insoluble in diethyl ether. It is a weak base with a pKb of 4.19; the pH of a 10% aqueous solution is 10.8–11.8. A large number of piperazine compounds have anthelmintic action. Piperazines are also used in the manufacture of plastics, resins, pesticides, brake fluid and other industrial materials (The Merck Index, 1989). The structure of (I) is shown in Fig. 1.

The N—C distances in piperazin-4-ium ring are 1.485 (3) and 1.490 (2) Å, while in the pyridine ring the N—C distance are 1.345 (2) Å. Hydrogen bonds of the type N—H…Cl link the molecules into chains, with N…Cl separation of 3.0961 (17) and 3.1020 (17) Å (Fig. 2).

Experimental

1-(2-Pyridinyl)piperazine (1 mmol) and trimethyltin chloride (1 mmol) were suspended in dry chloroform (150 ml) in a round bottom two necked flask. The mixture was stirred at room temperature. Colourless crystals of the title compound obtained accidently after recrystallization in acetone. (Yield 70%°; m.p. 393 K).

Refinement

H atoms were included in difference map positions and refined freely, with C—H distances ranging from 0.84 (2) - 1.00 (2) Å and N—H distances of 0.91 (2) and 0.98 (2) Å.

Figures

Fig. 1. Structure of (I) with displacement ellipsoids drawn at the 50% probability level.

Fig. 2. Packing of (I) viewed down a showing the N—H…Cl hydrogen bonding. H atoms not involved in hydrogen bonding have been omitted for clarity.

4-(2-Pyridyl)piperazin-1-ium chloride

Crystal data

C9H14ClN3	$F_{000} = 424$
$M_r = 199.68$	$D_{\rm x} = 1.364 {\rm ~Mg~m^{-3}}$
Orthorhombic, $P2_12_12_1$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 2404 reflections
<i>a</i> = 7.1757 (6) Å	$\theta = 3.0-26.3^{\circ}$
b = 7.2196 (6) Å	$\mu = 0.35 \text{ mm}^{-1}$
c = 18.7629 (16) Å	T = 100 (2) K
$V = 972.02 (14) \text{ Å}^3$	Plate, colourless
Z = 4	$0.40\times0.25\times0.15~mm$

Data collection

Bruker SMART CCD area-detector diffractometer	1781 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.044$
Monochromator: graphite	$\theta_{\rm max} = 26.4^{\circ}$
T = 100(2) K	$\theta_{\min} = 2.2^{\circ}$
ϕ and ω scans	$h = -8 \rightarrow 8$
Absorption correction: none	$k = -9 \rightarrow 8$
5613 measured reflections	$l = -20 \rightarrow 23$
1956 independent reflections	

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	Only H-atom coordinates refined

$R[F^2 > 2\sigma(F^2)] = 0.029$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0272P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
$wR(F^2) = 0.061$	$(\Delta/\sigma)_{max} < 0.001$
<i>S</i> = 0.96	$\Delta \rho_{max} = 0.22 \text{ e } \text{\AA}^{-3}$
1956 reflections	$\Delta \rho_{min} = -0.16 \text{ e } \text{\AA}^{-3}$
160 parameters	Extinction correction: none
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 787 Freidel pairs
Secondary atom site location: difference Fourier map	Flack parameter: 0.04 (7)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of $F^{2^{-}}$ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on $F^{2^{-}}$, conventional *R*-factors *R* are based on F, with F set to zero for negative $F^{2^{-}}$. The threshold expression of $F^{2^{-}} > 2$ sigma($F^{2^{-}}$) is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on $F^{2^{-}}$ are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Cl1	0.24771 (7)	0.33171 (5)	0.23724 (2)	0.02020 (12)
N1	0.3814 (2)	0.6758 (2)	0.32203 (8)	0.0201 (4)
N2	0.3397 (2)	0.90492 (19)	0.44477 (7)	0.0157 (3)
N3	0.4096 (2)	0.9562 (2)	0.56481 (8)	0.0194 (3)
C1	0.4004 (3)	0.5979 (3)	0.39523 (10)	0.0195 (4)
C2	0.4664 (3)	0.7455 (3)	0.44616 (10)	0.0178 (4)
C3	0.3159 (3)	0.9827 (3)	0.37348 (9)	0.0186 (4)
C4	0.2510 (3)	0.8355 (3)	0.32164 (9)	0.0221 (4)
C5	0.3404 (3)	1.0234 (2)	0.50341 (9)	0.0150 (4)
C6	0.2672 (3)	1.2021 (2)	0.49926 (9)	0.0174 (4)
C7	0.2704 (3)	1.3113 (2)	0.55864 (9)	0.0218 (4)
C8	0.3435 (3)	1.2463 (3)	0.62216 (10)	0.0201 (4)
С9	0.4074 (3)	1.0673 (3)	0.62279 (9)	0.0202 (4)
H1	0.494 (3)	0.714 (3)	0.3056 (9)	0.024*
H2	0.336 (3)	0.584 (3)	0.2878 (9)	0.024*
H3	0.485 (3)	0.500 (3)	0.3933 (9)	0.024*
H4	0.274 (3)	0.553 (2)	0.4082 (8)	0.024*
Н5	0.595 (3)	0.784 (2)	0.4338 (9)	0.024*
H6	0.474 (3)	0.697 (2)	0.4932 (10)	0.024*
H7	0.219 (3)	1.082 (3)	0.3732 (9)	0.024*
H8	0.431 (3)	1.036 (3)	0.3556 (9)	0.024*
Н9	0.244 (3)	0.885 (2)	0.2767 (9)	0.024*
H10	0.129 (3)	0.795 (3)	0.3334 (9)	0.024*

supplementary materials

H11	0.217 (3)	1.237 (3)	0.4612 (9)	0.024*
H12	0.223 (3)	1.440 (2)	0.5546 (9)	0.024*
H13	0.350 (3)	1.317 (3)	0.6642 (9)	0.024*
H14	0.453 (3)	1.016 (3)	0.6682 (9)	0.024*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0216 (2)	0.0179 (2)	0.0211 (2)	-0.0011 (2)	0.0015 (2)	-0.00328 (17)
N1	0.0234 (9)	0.0198 (8)	0.0171 (8)	-0.0057 (8)	0.0008 (7)	-0.0045 (7)
N2	0.0198 (8)	0.0144 (7)	0.0129 (7)	0.0023 (7)	-0.0015 (6)	0.0020 (6)
N3	0.0203 (8)	0.0213 (8)	0.0167 (8)	-0.0004 (7)	-0.0005 (6)	-0.0002 (7)
C1	0.0193 (10)	0.0171 (10)	0.0222 (10)	-0.0004 (8)	0.0002 (9)	-0.0002 (8)
C2	0.0198 (11)	0.0171 (9)	0.0165 (9)	0.0031 (8)	-0.0025 (8)	0.0015 (8)
C3	0.0229 (10)	0.0181 (9)	0.0149 (9)	0.0010 (8)	-0.0030 (8)	0.0015 (8)
C4	0.0253 (10)	0.0245 (9)	0.0164 (8)	-0.0004 (13)	-0.0044 (10)	0.0020 (8)
C5	0.0125 (9)	0.0167 (9)	0.0158 (9)	-0.0015 (8)	0.0024 (7)	0.0025 (8)
C6	0.0179 (10)	0.0170 (9)	0.0172 (8)	0.0007 (9)	-0.0012 (9)	0.0042 (7)
C7	0.0198 (11)	0.0159 (9)	0.0297 (10)	0.0004 (9)	0.0028 (9)	0.0016 (8)
C8	0.0189 (10)	0.0222 (10)	0.0191 (10)	-0.0035 (9)	0.0039 (8)	-0.0062 (8)
C9	0.0185 (10)	0.0277 (11)	0.0143 (9)	-0.0012 (8)	-0.0003 (8)	0.0027 (8)

Geometric parameters (Å, °)

N1—C4	1.485 (3)	C3—C4	1.514 (2)
N1—C1	1.490 (2)	С3—Н7	0.998 (19)
N1—H1	0.91 (2)	С3—Н8	0.97 (2)
N1—H2	0.979 (19)	С4—Н9	0.918 (17)
N2—C5	1.394 (2)	C4—H10	0.95 (2)
N2—C3	1.461 (2)	C5—C6	1.395 (2)
N2—C2	1.467 (2)	C6—C7	1.365 (2)
N3—C5	1.345 (2)	С6—Н11	0.840 (19)
N3—C9	1.352 (2)	C7—C8	1.384 (3)
C1—C2	1.508 (3)	С7—Н12	0.991 (19)
С1—Н3	0.93 (2)	C8—C9	1.371 (3)
C1—H4	1.00 (2)	С8—Н13	0.939 (18)
С2—Н5	0.99 (2)	С9—Н14	0.985 (17)
С2—Н6	0.951 (18)		
C4—N1—C1	110.81 (14)	N2—C3—H8	111.7 (11)
C4—N1—H1	108.9 (12)	С4—С3—Н8	108.5 (11)
C1—N1—H1	110.2 (11)	Н7—С3—Н8	107.6 (15)
C4—N1—H2	108.4 (11)	N1—C4—C3	110.37 (16)
C1—N1—H2	112.2 (11)	N1—C4—H9	110.1 (12)
H1—N1—H2	106.2 (15)	С3—С4—Н9	109.3 (11)
C5—N2—C3	119.17 (14)	N1-C4-H10	109.8 (12)
C5—N2—C2	117.74 (14)	C3—C4—H10	110.6 (11)
C3—N2—C2	112.98 (14)	H9—C4—H10	106.5 (17)
C5—N3—C9	118.09 (15)	N3—C5—N2	117.13 (15)

N1—C1—C2	110.24 (15)	N3—C5—C6	121.36 (15)
N1—C1—H3	108.1 (11)	N2C5C6	121.48 (15)
С2—С1—Н3	110.9 (12)	C7—C6—C5	118.83 (16)
N1—C1—H4	105.4 (10)	С7—С6—Н11	121.8 (13)
C2—C1—H4	111.3 (9)	C5—C6—H11	119.2 (13)
H3—C1—H4	110.7 (16)	C6—C7—C8	120.90 (17)
N2—C2—C1	110.42 (15)	C6—C7—H12	118.2 (10)
N2—C2—H5	110.6 (11)	C8—C7—H12	120.9 (10)
C1—C2—H5	110.0 (11)	C9—C8—C7	116.97 (17)
N2—C2—H6	110.0 (11)	С9—С8—Н13	119.1 (12)
С1—С2—Н6	110.3 (10)	С7—С8—Н13	123.9 (12)
Н5—С2—Н6	105.4 (16)	N3—C9—C8	123.80 (17)
N2—C3—C4	110.76 (15)	N3—C9—H14	118.1 (11)
N2—C3—H7	111.3 (10)	C8—C9—H14	118.1 (11)
C4—C3—H7	106.7 (10)		
C4—N1—C1—C2	-57.5 (2)	C3—N2—C5—N3	-163.18 (16)
C5—N2—C2—C1	158.72 (16)	C2—N2—C5—N3	-20.2 (2)
C3—N2—C2—C1	-56.1 (2)	C3—N2—C5—C6	18.7 (3)
N1-C1-C2-N2	56.1 (2)	C2—N2—C5—C6	161.74 (17)
C5—N2—C3—C4	-159.81 (17)	N3—C5—C6—C7	1.5 (3)
C2—N2—C3—C4	55.5 (2)	N2C5C7	179.50 (18)
C1—N1—C4—C3	56.9 (2)	C5—C6—C7—C8	-0.5 (3)
N2-C3-C4-N1	-55.2 (2)	C6—C7—C8—C9	-1.5 (3)
C9—N3—C5—N2	-178.43 (16)	C5—N3—C9—C8	-1.9 (3)
C9—N3—C5—C6	-0.3 (3)	C7—C8—C9—N3	2.8 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N1—H2···Cl1	0.979 (19)	2.15 (2)	3.1020 (17)	164.3 (15)
N1—H1···Cl1 ⁱ	0.91 (2)	2.19 (2)	3.0961 (17)	174.3 (17)
Symmetry codes: (i) $-x+1$, $y+1/2$, $-z+1/2$.				

